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Test cases design 

Apart from the defined data sets, additional examples were added from the literature 
(supplied through authors' web sites), if available for a particular environment. 

Distributions of random variables 
In the process of defining the test cases, it is necessary to use the generators of 

pseudorandom numbers that serve as the basis for job duration, arrival time etc. It is necessary 
to choose the probabilistic distribution that the generated random variables will follow. The 
sets used for learning use the uniform distribution generator obtained by a built-in MS Visual 
Studio generator. For the purposes of evaluation sets, we combined three distributions: 
uniform, normal (Gaussian) distribution and a quasi-bimodal distribution (similar to [Gre 
01]). When composing an evaluatin set the distributions have been used in the following 
proportions: 20% of random values follow a uniform, 50% normal and 30% quasi-bimodal 
distribution. Probability function for a quasi-bimodal distribution is defined as in Figure 1 
with the values of constants 0.004651B = , 2A B=  i 3C B= (random variables values are set 
in the interval [1, 100]). 

 

Slika 1. A probabilistic function of a quasi-bimodal distribution 

Best solution selection 
When choosing the best solution in all experiments, the best solutions from individual 

experiments were evaluated using a set of evaluation test examples, i.e. on a set that was not 
available during the learning process. 

Another selection measure was the number of test cases in which the algorithm 
achieved a result that is either not worse than the results of any observed algorithm or is the 
best result found. This measure can be called and the dominance percentage. Dominance 
percentage may contribute to the choice of an algorithm if the observed algorithms differ only 
sloghtly in terms of total criteria value. 

 

1. Single machine environment 

Test cases for static environment 
Test examples for static environments are defined by the following elements: job 

durations, job weights and job due date. The duration of each job can take on integer values in 
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the interval from 1 to 100, a weight from 0.01 to 1 in increments of 0.01. Each test example is 
defined by two additional parameters by which the due dates are calculated. Parameter T  is
the due date tightness and parameter R  is due date range [Lee 97], which both assume values 
in the interval [ ]0,1 . For each test case, the due dates are defined with the uniform distribution 

within the interval 

 ( ) ( )
1 1

1 2 , 1 2
n n

j j j

j j

d p T R p T R
= =

 
∈ − − − + 
 
∑ ∑ , (0.1) 

where n  represents the number of jobs in the test case, with the restriction that the 
resulting value can not be less than zero.  

Number of jobs in this environment takes on values of 12, 25, 50 and 100, and the 
parameters T  and R  assume values of 0.2, 0.4, 0.6, 0.8 and 1 in different combinations. In 
addition, from various sources [Bea 90] was obtained 375 additional test cases that are used 
only for evaluation. 

Test cases for dynamic environment 
Ispitni primjeri definirani su na sličan način kao i za statičku okolinu: pojedini primjer 

opisan je različitim vrijednostima parametara T i R, a područja dopuštenih vrijednosti jednaka 
su onima za statičku okolinu. Razlika u odnosu na prethodnu okolinu je uvođenje vremena 
pripravnosti poslova i različito računanje željenog vremena završetka. Za svaki ispitni primjer 
prvo su određena trajanja poslova te je izračunato ukupno trajanje svih poslova. Vremena 
pripravnosti generirana su jednolikom raspodjelom u intervalu  

A single test case in a dynamic environment is described with different values of the 
parameters T and R with the same allowed values as in static environment. The difference 
compared to the previous environment is the introduction of ready time of jobs and different 
due date time. Ready times are generated with the uniform distribution in the interval 
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Due dates are generated in the following interval: 
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Test cases with precedence constraints 
Precedence constraints are designed in the most general form (which do not take the 

form of chains or single trees, etc.), which is the hardest variant of the problem. When 
creating constraints the following parameters are used: 

• average ratio of jobs that will have precedessors is 80%, 
• ratio of jobs with no predecessors is no less than 20%, 
• largest number of immediate predecessors is 3, 
• largest number of immediate successors is 4. 

Experiments were also performed with different values, but the difference in terms of 
efficiency in these cases is not significant. Constraints are presented in the form of graphs, 
which are for all the test cases written in a format suitable for use in test scheduling rules. An 
example of dependency graph for a test instance with 12 jobs is shown in Figure 2. In this 
example, each node in the graph shows the number of the job and in parenthesis the duration 
of the job and its weight. 
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Slika 2. Dependence graph for a set of 12 jobs 

Test cases with setup times 
A duration is defined for each possible combination of previous and current job, which 

for a single test case makes a matrix of size n n× . In some situations it can be assumed that 
the setup time between the two jobs is independent of their order, i.e. the matrix is 
symmetrical, but here we considered a general case. 

The amount of data that would be required to store the duration of the setup for each 
test example is inappropriately large (eg, for 300 examples, with an average of 50 jobs, it 
would require 50 x 50 x 600 different values). Therefore, for each test example setup times 
are generated during the simulation, but using predefined random generator seed values for 
test cases so that they always return the same value (for comparison of different methods). 
Setup time is determined with uniform distribution using the additional parameter η  which 
represents the ratio of the average duration of the setup and the average duration of the jobs. 
The value of this parameter is set to 0.5 in learning test cases and 0.5 and 1 in evaluation test 
cases. 

2. Parallel uniform machines environment 

Number of jobs in the test examples for learning can be 12, 25, 50 and 100, and in the 
evaluation 25, 50 and 100. Nominal values job durations are obtained as an integer value 
ranging from 1 to 100. For each test instance the number of machines is also defined, which 
for learning cases takes values of 3, 6 and 10, and in evaluation cases of 3, 6, 10, 15 and 20. In 
addition to the nominal job duration, it is necessary to define the speed is  for each machine. 

Job j  duration on machine i is then: 

 ij j ip p s= . (0.4) 

Speed of machines are determined using the random variable spd  that for each 

machine takes its values in the interval [ ]0.1,1  in increments of 0.01 with uniform 

distribution. Machine speed is then defined as: 
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Speeds defined in this way assume values from 1 to 10, but with a larger grouping at 
smaller values. Based on the speed of machines it is possible to define the effective number of 

machines m̂  as the sum of all their speeds: 
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where m  is number of machines in a given test case. With the help of the effective 
number of machines we define the expected total duration of jobs p̂  as 
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Ready times are generated with uniform distribution in the interval 
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In static environment (ready times are zero) the due dates are defined in the interval 

 ( ) ( )ˆ ˆ1 2 , 1 2jd p T R p T R ∈ − − − +  , (0.9) 

whereas in dynamic environment in the interval 
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Setup times (if included) are defined in the same way as for the single machine and do 
not depend on machine speed. 

3. Parallel unrelated machines environment 

In this environment the following holds: 
• for each job its duration on each machine is defined ( ijp ), a total of n m×  

values for each test case, where n is the number of jobs and m the number of 
machines; 

• the expected total duration of jobs p̂  is defined as 
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Using the expected total duration and the parameters T and R, ready times are 
generated by the expression (0.8), and the due dates with (0.10). The objective function is 
formed in the same way as for uniform parallel machines with mean duration of the jobs 
expressed as ˆp p n= . 

 

4. Job shop environment 

In this environment for each job the duration of each operation and their order is 
defined. The duration of individual operations is generated in a manner equal to other 
environments. Order of operations is obtained by initially defining a series of ordinal numbers 
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of machines, in order of size. Then the ordinal number of each element is replaced with 
another randomly selected element, until a series of operations for each job is generated. The 
expected total job duration for each test instance is defined as: 
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where n is number of jobs and m number of machines in a given case. Due dates are 
defined with expressions (0.9) and (0.10). 

The test cases are divided into a set of 160 training examples and a set of 320 
evaluation examples. Additional 80 examples are used from [Tai 03] where the number of 
jobs ranges from 15 to 100 and number of machines is 15 or 20. All test cases are defined as a 
static environment in which all the jobs are ready since the beginning of the system execution. 
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