Dynamic Scheduling with Genetic Programming

Domagoj Jakobović, Leo Budin

domagoj.jakobovic@fer.hr Faculty of electrical engineering and computing University of Zagreb

Introduction
 most scheduling problems are NP complete – require heuristic solving methods heuristic methods may be divided in two broad categories: search or enumerative procedures – high quality solutions, large time demand GA, branch and bound, neighborhood search give solution in the form of a single schedule (activity-resource timetable) require new computation for each scheduling instance solution building heuristics – solutions of generally less quality, fast solving time give solution in the form of state transition (i.e. "start activity A on resource B next") readily applicable on each new scheduling instance mostly referred to as 'scheduling rules', 'scheduling policies' or 'dispatching rules'
1/25

Driarity cohoduling
 scheduling rule transforms the system from current state into the next by assigning an activity to a resource the choice of activity and/or resource is based on their respective priority – priority scheduling we define the following components of a scheduling rule: priority function rule application algorithm priority function defines current priority values of the elements of the system (jobs in most cases) the activity with the highest value is assigned to the highest value resource
 scheduling may occur when a certain condition is fulfilled: a resource becomes free, new activity arrives etc. 3/25

Test cases

- job duration: integer values 1,..,100 with uniform, normal and bimodal distributions
- weights: values 0.01,..,1 with uniform dist.
- job release dates $r_j \in \left[0, \frac{1}{2} \sum_{i=1}^{n} p\right]$
- job due dates (dynamic environment)

$$d_{j} \in \left[r_{j} + \left(\sum_{j=1}^{n} p_{j} - r_{j} \right) \cdot \left(1 - T - R/2 \right), r_{j} + \left(\sum_{j=1}^{n} p_{j} - r_{j} \right) \cdot \left(1 - T + R/2 \right) \right]$$

- parameters T and R fixed for a single test case with values in
 [0, 1]
- 12, 25, 50 and 100 jobs per test case
- 100 learning test cases, 600 evaluation test cases

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Function name	Definition binary math operators
POS	$POS(a) = \max\{a, 0\}$
Terminal name	Definition
pt	processing time (p_j)
dd	due date (d_j)
w	weight (w_j)
Ν	number of jobs
Nr	remaining (unscheduled) jobs
SP	sum of processing times of all jobs
SPr	sum of processing times of remaining jobs
SL	sum of due dates of all jobs positive slack, max $\{d_i - p_i - time, 0\}$
AR	time till job arrival (waiting time), max $\{r_i - time, 0\}$

Job shop scheduling
 jobs consist of series of operations each operation executed on a predefined machine in a predefined sequence (job dependant) input variables: p_{ij} - operation processing time of job j on machine i W_j - job weight d_j - job due date what operations can be scheduled at some moment in time? available operations operations with known ready time in future (the job's previous operation is currently executing) time till the operation can start is smaller than the duration of the shortest available operation above categories denoted as <i>pending operations</i>

Functions and terminals					
Function name	Definition				
ADD, SUB, MUL, DIV, POS	-				
SQR	protected unary square root: $SQR(a) = \begin{cases} 1, & \text{if } a < 0 \\ \sqrt{a}, & \text{otherwise} \end{cases}$				
IFGT	comparison operator: <i>IFGT</i> $(a, b, c, d) = \begin{cases} c, \text{ if } a > b \\ d, \text{ otherwise} \end{cases}$				
Terminal name	Definition				
pt	operation processing time(p_{ij})				
dd	job due date (d_j)				
w	job weight (w_j)				
CLK	current time				
AR	operation waiting time: $\max\{r_{ij} - time, 0\}$, where r_{ij} denotes finishing time of the previous operation (before machine <i>i</i>)				
NOPr	number of remaining job operations				
TWK	total processing time of all operations of a job (twk_j)				
TWKr	processing time of remaining operations of a job $(twkr_j)$				
PTav	average duration of all the operations on a given machine head time ratio: the ratio of the total time the job has been				
HTR	in the system and total duration of job's completed operations	17/25 🕨			

machine	
Terminal name	Definition
MTWK	total processing time of all operations on a machine
MTWKr	processing time of all remaining operations on a machine
MTWKav	average duration of all operations on all machines
MNOPr	number of remaining operations on a machine
MNOPw	number of currently waiting operations on a machine
MUTL	utilization: the ratio of duration of all processed operation
function set ider	ntical to the scheduling trees

		Resul	ts							
 one machine, sequence dependant setup times, p constraints, weighted tardiness optimization 							preceder	nce		
			100% -		Postotak	najboljih pron	ađenih rješenja	1		
			80% -							
			60% -							
			40% -							
			20% -							
				GP	ATCS	RM	MON	WSPT	SIDNEY	
			■ Twt	72%	9%	10%	6%	3%	1%	
			Uwt	37%	28%	6%	14%	13%	9%	
			- Fwt	93%	4%	0%	12%	2%	0%	
			Cinax	0978	578	078	13 /8	2 /8	078	
										27/25 💌