Dynamic Scheduling with Genetic
Programming

Domagoj Jakobovi¢, Leo Budin

domagoj.jakobovic@fer.hr
Faculty of electrical engineering and computing
University of Zagreb

Introduction

most scheduling problems are NP complete — require heuristic
solving methods
heuristic methods may be divided in two broad categories:
. search or enumerative procedures — high quality solutions,
large time demand
+ GA, branch and bound, neighborhood search...
+ give solution in the form of a single schedule (activity-resource
timetable)
+ require new computation for each scheduling instance
. solution building heuristics — solutions of generally less quality,
fast solving time
+ give solution in the form of state transition (i.e. "start activity A on
resource B next")
readily applicable on each new scheduling instance
mostly referred to as 'scheduling rules', 'scheduling policies' or
'dispatching rules'

1/25

Introduction

scheduling rules: often the only choice in time constrained or
dynamic scheduling

« allow frequent schedule modification and reaction to changing
system requirements

different performance criteria demand different scheduling
heuristics

« which heuristic to use?

+ can a more 'appropriate' heuristic be designed?
project: evolution of scheduling heuristics with GP

goal: alleviate the design of arbitrary scheduling heuristics (for
user defined criteria and scheduling environment)

Priority scheduling

scheduling rule transforms the system from current state into
the next by assigning an activity to a resource
the choice of activity and/or resource is based on their
respective priority — priority scheduling
we define the following components of a scheduling rule:

« priority function

« rule application algorithm
priority function defines current priority values of the elements
of the system (jobs in most cases)

« the activity with the highest value is assigned to the highest value

resource

rule application algorithm or meta-algorithm defines when and
how activities get scheduled

« scheduling may occur when a certain condition is fulfilled: a
resource becomes free, new activity arrives etc.

Priority scheduling

m an example of a meta-algorithm (one machine scheduling):
while (there are unscheduled jobs)

wait until the machine is available;

calculate priorities 77; ofall available jobs;

start the best priority job;

examples of priority functions (best priority = highest priority
value):

o T =W, / P; - WSPT (weighted shortest processing time) rule

+ 71, =1d, - EDD (eariiest due date) rule
in simpler environments meta-algorithm is mostly omitted

Evolution of scheduling heuristics

m meta-algorithm: defined manually
« different meta-algorithm for each scheduling environment
m priority function: evolved with GP

« different priority function can be evolved for every combination of
scheduling environment and criteria

Dynamic one machine scheduling

m environment: one machine with job release dates
m input variables:

¢ P; - processing time

¢ [, -release date

- dj - due date

W - weight
m output:

+ job finishing time C

+ flowtime Fj =CJ. -
+ tardiness T, = max{Cj —d, ,('}

{1:T. >0
+ lateness U. = !

i

0:T,=0

Fitness function(s)

m scheduling criteria m fitness function (/-th test case)
« weighted tardiness Zl:wj-rj

T, =2, W, i = D

+ weighted number of late jobs s
ZWIUJ

Uy :ziWin f, =1=

n v
+ weighted flowtime

Z:;WJ F
Fu=2.,WF (T

+ makespan

C_ max{C,}

i np

Test cases

= job duration: integer values 1,..,100 with uniform, normal and
bimodal distributions

m weights: values 0.01,..,1 with uniform dist.

l n
= job release dates T, D[O,EZ p,}
i=1t

= job due dates (dynamic environment)
d, D{ri +[Zl P; —rJE@l—T -R/2).r, {Z} P]qu_T +R/ 2)}
j= =

m parameters T and Rfixed for a single test case with values in
[0, 1]

m 12,25, 50 and 100 jobs per test case

m 100 learning test cases, 600 evaluation test cases

Scheduling in a dynamic environment

a meta-algorithm needs to be defined for dynamic environment
(with job release dates)

dealing with dynamic conditions:

1. consider only available jobs

2. consider (some) jobs that arrive in future and add waiting time to
their processing time in priority function (use static priority
functions)

3. consider (some) jobs that arrive in future and use dynamic priority
function (which takes waiting time in account)

existing heuristics: 2" or 34 approach
GP evolved heuristics: 3rd approach

Scheduling in a dynamic environment

m meta-algorithm used:
while (there are unscheduled jobs)
{ wait until the machine is available;
Pjmn = duration of shortestavailable job;
calculate priorities of all jobs for which |rj —time| < Pjuin
startjob with best priority;

Functions and terminals

ADD, SUB, MUL, DIV binary math operators
POS POS(a)=max{a,§

pt processing time ;)

dd due date @;)

w weight (w;)

N number of jobs

Nr remaining (unscheduled) jobs

SP sum of processing times of all jobs

sum of processing times of remaining jobs
SD sum of due dates of all jobs

SL positive slack,max{dJ -p, —time,(}

AR time till job arrival (waiting time),max{rJ —time,(}

RE IS

= an example of evolved priority function:

job priority =
((SL+((SPr/(((((pt/w)+((Nr+(Nr/w))*AR))+((SPr/(N/((N-SPr)+(SPr+SL))))(SPr*((SL+(pt+SL))/
SP)))/(pt-SPr)+(SPr+SL)))+w))/(N+N))) +((((pt/w) +((Nr+(Nr/w)) “AR))+((SPr/((N/((pt-SPr)+(
SPr+SL)))+w))/((pos((N*(dd+((N/(N+((N+N) *Nr)))/w))))*(N/ (W/(SL+((SD-SPr)+SL))))) *((SL+(
pt/N))/SPr))))-(((SL/(((N+N) *Nr)/((N*(dd+(AR/w)))-((SL+(Nr/w))+((SP+w)-pos(((pt+SL)*(dd+((

N+N)/w))))))))-(Nriw))/ ((pt-SPr)+(((pt+SL)/pt)*w)))))
GP evolved solution is compared to existing heuristics (for a
given environment)
m results shown in two forms:
1. total normalized criteria values (less is better)
2. percentage of test cases in which the heuristic achieved the best
known result — dominance percentage (more is better)

m results generated on unseen set of evaluation test cases

E IS

m one machine, job release Absolute criteria values
dates, weighted
tardiness problem

[[

XD RM MON
|El Twt 389.7 | 451.7 623.1
|. Uwt 194.1 | 210.6 216.7

Dominance percentage

100%

80%
60% -

40%

20% -

0% -

|El Twt
[uwt

RE IS

® ohe machine, _]Ob release Absolute criteria values
dates, weighted number
of late jobs

[[

XD RM MON
|El Twt 389.7 | 451.7 623.1
|. Uwt 194.1 | 210.6 216.7

Dominance percentage

100%

80%
60% -

40%

20%

0% -

|El Twt
[uwt

Job shop scheduling

jobs consist of series of operations
each operation executed on a predefined machine in a
predefined sequence (job dependant)
input variables:
¢ ;- operation processing time of job j on machine /
+ W, - job weight
S dj - job due date
what operations can be scheduled at some moment in time?
+ available operations
« operations with known ready time in future (the job's previous
operation is currently executing)
+ time till the operation can start is smaller than the duration of
the shortest available operation

above categories denoted as pending operations

Job shop scheduling

m meta-algorithm in job shop scheduling:
while (there are unscheduled operations)

{ wait for a machine with pending operations;
calculate priorities of all pending operations;
schedule best priority operation;
update machine and next job’s operation ready time;

Functions and terminals

ADD, SUB, MUL, DIV,

POS

J 1, ifa<0

SQR protected unary square roSQR(a):-N_ thenwi
a, otherwise

c, ifa>b
IFGT comparison operatottFGT (a,b,c,d) :-{ d. otherwise

operation processing time()

job due date d;)

job weight (w;)

current time

operation waiting timemax{ni —time,q , wherer;
denotes finishing time of the previous operatioef¢be

number of remaining job operations
total processing time of all operations of a jawlk()

processing time of remaining operations of a joik()

average duration of all the operations orvargimachine
head time ratio: the ratio of the total time thie jtas been
in the system and total duration of job's completed
operations

Results — weighted tardiness optimization

Absolute criteria values

1

i[HAHE

COVERT WSPT SPT/TWKR

1798 161.6 1955
73.4 69.3 74.6
1190 107.9 1232
118.7 121.7 1189

Dominance percentage

Adaptive scheduling heuristic

often a small number of resources present bottlenecksin a

system (relatively much greater load)

scheduling efficiency can be improved with a prioriload data
« generally not available in advance

usage of a 'load-aware' meta-heuristic with bottleneck

identification may be useful

let GP develop such a heuristic

proposed GP solution structure in 3 independent trees:

+ two scheduling trees — priority functions for 'high load' and
‘average load' conditions/resources

+ decision tree — determines which of the other two is used at a
given moment

Meta-algorithm for adaptive heuristic

m proposed meta-algorithm coupled with multiple tree solution:

for (each machine)
P = decision tree value;

while (there are unprocessed operations)
{ wait for a machine with pending operations;
P = decision tree value for current machine;
if(R>P,,0Om)
calculate priorities using the second tree;
else
calculate priorities using the first tree;
schedule best priority operation;

update machine and job’s next operation ready time;

Terminals of the decision tree

m terminals have to describe the current load situation on a
machine

MTWK total processing time of all operations on aaiine
MTWKTr processing time of all remaining operatiomsamachine
MTWKav average duration of all operations on alctniaes

number of remaining operations on a machine
number of currently waiting operations on acimne
utilization: the ratio of duration of all processsgerations|
on a machine and total elapsed time

m function set identical to the scheduling trees

11

Results — weighted tardiness optimization

Absolute criteria values

COVERT WSPT SPT/TWKR

1798 161.6 1955
73.4 69.3 746
1190 107.9 1232
1187 121.7 118.9

Dominance percentage
100%

80%

60%

40%

I [
ml| mll

COVERT SPTITWKR

0% 0%

0%

Adaptive heuristic performance

m head-to-head comparison of single tree ('GP") and multiple tree
solutions ('GP-3") in terms of dominance percentages

« the difference in absolute criteria values is not great (146.05 vs
147.5 in mean values over multiple runs)

Dominance percentage

-

GP

12

Conclusion

GP evolved scheduling heuristics exhibit performance
measurable to those of human-designed heuristics

« particularly useful in cases where there are no suitable heuristics
(e.g. non-standard performance criteria or scheduling environment)

problem divided in meta-algorithm and priority function part
suitable meta-algorithm can improve scheduling efficiency

the described methodology alleviates the design of arbitrary
scheduling heuristics

modification needed for a new environment:
« define new or use existing meta-algorithm

« define environment and criteria specific terminals (possible use of
the same variables as in existing heuristics)

+ define appropriate test cases

Future work...

scheduling imprecise computation systems
multicriteria optimization

evolution of caching protocols

evolution of meta-algorithm with GP

iterative schedule refinement (non-deterministic scheduling
rules)

-- further information: domagoj.jakobovic@fer.hr

RE IS

m one machine, job release dates, sequence dependant setup
times, weighted tardiness optimization

Postotak najboljih pronadenih rjeSenja

=S

WSPT

1%

E IS

m one machine, sequence dependant setup times, precedence
constraints, weighted tardiness optimization

Postotak najboljih pronadenih rjesenja

= B

SIDNEY

% 1%
9%
0%
0%

14

