
Evolving Priority Scheduling Heuristics with

Genetic Programming

Domagoj Jakobović, Kristina Marasović

University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
University of Split, Faculty of Science, Teslina 12, 21000 Split, Croatia

domagoj.jakobovic@fer.hr, kristina.marasovic@pmfst.hr

Abstract

This paper investigates the use of genetic programming in automatized synthesis of
scheduling heuristics for an arbitrary performance criteria. The applied scheduling
technique is priority scheduling, where the next state of the system is determined
based on priority values of certain system elements. Genetic programming is used to
create the priority function which, coupled with an appropriate meta-algorithm for
a given environment, forms the priority scheduling heuristic. The evolved solutions
are compared with existing scheduling heuristics and found to perform similarly
or better than existing algorithms. We intend to show that this approach may be
particularly useful for those combinations of scheduling environment and criteria
for which there are no adequate scheduling algorithms.

Key words: genetic programming, priority scheduling
PACS:

1 Introduction

Scheduling is concerned with the allocation of scarce resources to activities
with the objective of optimizing one or more performance measures, which
can assume minimization of makespan, job tardiness, number of late jobs
etc. The combinatorial nature of most scheduling problems allows the use
of search based and enumerative techniques [10], such as genetic algorithms,
branch and bound, simulated annealing etc. These methods usually offer good
quality solutions, but at the cost of a large amount of computational time
needed to produce such a solution. Furthermore, search based techniques are
not applicable in dynamic or uncertain conditions where there is need for
frequent schedule modification or reaction to changing system requirements
(i.e. resource failures or job parameter changes). Scheduling with simple but

Preprint submitted to Elsevier 3 February 2011



fast heuristic algorithms that build the schedule directly (not searching the
solution space) is therefore highly effective, and the only feasible solution, in
many instances.

Due to inherent problem complexity and variability, a large number of schedul-
ing systems employ such heuristic scheduling methods. Among many available
heuristic algorithms, the question arises of which heuristic to use in a partic-
ular environment, given different performance criteria and user requirements.
The problem of selecting the appropriate scheduling policy is an active area
of research [10][19], and a considerable effort is needed to choose or develop
the algorithm best suited to the problem at hand. A solution to this problem
may be provided using machine learning, genetic programming in particular,
to create problem specific scheduling algorithms.

Genetic programming (GP) has rarely been employed in scheduling, mainly
because it is unpractical to use it to search the space of potential solutions
(i.e. schedules). It is, however, very suitable for the search of the space of al-
gorithms that provide solution to the problem. Previous work in this area of
research includes evolving scheduling policies for single machine unweighted
tardiness problem [6][7][1], single machine scheduling subject to breakdowns
[20], classic job shop tardiness scheduling [2][13] and airplane scheduling in
air traffic control [4][9]. In most cases the authors observe performance com-
parable to the human-made algorithms. The scheduling procedure is however
defined only implicitly for a given single scheduling environment. Moreover,
the scheduling paradigm is reduced to list scheduling where job ordering is
determined only at the beginning of the process, which reduces the choice of
usable heuristics.

In this paper we structure the scheduling algorithm in two components: a
meta-algorithm, which uses priority values to perform scheduling, and a prior-
ity function which defines priorities for different elements of the system. The
priority function is evolved for a given scheduling environment using genetic
programming, while the meta-algorithm is defined manually. This allows eas-
ier creation of various heuristics in an arbitrary scheduling environment. To
illustrate this methodology, we address the problems of one machine and job
shop scheduling (multiple identical and unrelated machine environments were
also investigated), combined with several real-world properties which compli-
cate the application of existing heuristics. The properties include job weights,
dynamic job arrivals, precedence constraints, sequence dependent setup times
and combinations of those. The remainder of this paper is organized as follows:
Section 2 describes the approach in more detail, and the next two sections show
its application on single machine and job shop problem, respectively. Section
5 covers the choice of relevant parameters and Section 6 gives a discussion of
the results, followed by a brief conclusion.

2



2 Priority Scheduling with Genetic Programming

A natural representation for the solution of a scheduling problem is a sequence
of activities to be performed on each of the machines. This sequence presents
only a solution to the specific problem instance, which means that a new
solution must be found for different initial conditions. With genetic program-
ming, we have the ability to represent an algorithm which will be used to
generate schedules for all the problem instances in a scheduling environment.
The algorithm that genetic programming evolves is in the form of a tree,
where tree nodes represent problem specific functions, variables (terminals)
and commands.

The scheduling paradigm applied in this work is priority scheduling, in which
certain elements of the scheduling system are assigned priority values. The
choice of the next activity being run on a certain machine is based on their
priority value. This kind of scheduling algorithm is also called, variously, ’dis-
patching rule’, ’scheduling rule’ or just ’heuristic’. The term scheduling rule, in
a narrow sense, often represents only the priority function which assigns values
to elements of the system (jobs in most cases). For instance, a scheduling pro-
cess may be described with the statement ’scheduling is performed using SPT
rule’. While in most cases the method of assignment of jobs on machines based
on priority values is trivial, in some environments it is not. This is particularly
true in dynamic conditions where jobs arrive over time or may not be run be-
fore some other job finishes. That is why a meta-algorithm must be defined
for each scheduling environment, dictating the way activities are scheduled
based on their priorities and possible system constraints. This meta-algorithm
encapsulates the priority function, but the same meta-algorithm may be used
with different priority functions and vice versa. In virtually all the literature
on the subject the meta-algorithm part is never explicitly expressed but only
presumed implicitly, which can lead to misunderstandings between different
projects.

In this work the meta-algorithm is defined manually for a specific schedul-
ing environment, such as one machine or job shop. The priority function, on
the other hand, is evolved with genetic programming and presented as a tree
structure using appropriate functional and data structures. This way, using
the same meta-algorithm, different scheduling algorithms best suited for var-
ious criteria can be devised. The task of genetic programming is to find such
a priority function which would yield the best results considering given user
requirements. Once evolved, the priority function can be used with an exist-
ing meta-algorithm to generate schedules for unseen problem instances. The
described structure of the scheduling algorithm allows modular development
and the possibility of iterative refinement, which is particularly suitable for
machine learning methods.

3



A simple example may be given for a one machine environment with static job
availability (all jobs ready to begin at time zero), where the meta-algorithm
is trivial:

while there are unscheduled jobs do
wait until machine is ready;
calculate priorities of all unscheduled jobs;
schedule job with best priority;

end while

The priority function will depend on the given scheduling criteria; a simple
function that minimizes total flowtime (the amount of time all the jobs spend
in the system) is π = wj/pj, where wj is relative weight and pj the processing
time of job j (also known as WSPT rule). In this work, the actual priority
functions are evolved using GP, given some scheduling criteria as a measure
of fitness.

The time complexity of priority scheduling algorithms depends on the meta-
algorithm, but it is in most cases negligible compared to search-based tech-
niques, which allows the use of this method in on-line scheduling [17] and
dynamic conditions. For instance, a common meta-algorithm simply finds the
best priority value among all the available jobs, which takes O (n) time. It is
obvious that the priority function has to be previously evolved with genetic
programming, which is a lengthy process, but this can be performed offline
before the actual scheduling takes place. All the heuristics presented in this
paper, both the existing and the evolved ones, produce schedules for several
hundred instances in less than a second.

3 Single Machine Scheduling

3.1 Problem Statement

In a single machine environment, a number n of jobs Jj are processed on a
single resource. In a static problem each job is available at time zero, whereas
in a dynamic problem each job has a release date rj. The processing time
of the job is pj and its due date is dj. The relative importance of a job is
denoted with its weight wj. In this environment the non-trivial optimization
criteria include weighted tardiness and weighted number of late jobs, which are
defined as follows: if Cj denotes the finishing time of job j, the job tardiness
Tj is defined as

Tj = max {Cj − dj, 0} . (1)

4



Lateness of a job Uj is taken to be 1 if a job is late, i.e. if its tardiness is greater
than zero, and 0 otherwise. Weighted tardiness for a set of jobs is defined as

Tw =
∑

j
wjTj (2)

and weighted number of late jobs as

Uw =
∑

j
wjUj . (3)

In case where a machine may need to process more than one type of job,
there is sometimes a requirement to adjust the machine for the processing
of the next job. If the time needed for adjusting depends on the previous
and/or the following job, then this is referred to as sequence dependent setup
time and must be defined for every possible combination of two jobs [12] [11].
This condition further increases the problem complexity for some scheduling
criteria.

Additionally, if certain jobs cannot start until some other jobs have finished,
then the problem includes precedence constraints. The precedence relation ≺
is defined for two jobs Ji ≺ Jk iff job Ji must finish before job Jk could be
started. Precedence constraints are usually represented as a directed graph
where nodes denote jobs and connections represent constraints.

In summary, we address the following variants (and their combinations) of a
single machine scheduling problem:

• static or dynamic problem,
• with or without setup times,
• with or without precedence constraints.

3.2 Benchmark Scheduling Heuristics

The effectiveness of the presented approach is estimated by comparing the GP
evolved priority rules with existing heuristics for a given variant of the problem
and scheduling criteria. The basic heuristics used in this work are EDD (ear-
liest due date [15][7]), WSPT (weighted shortest processing time [15][7][6]),
MON (Montagne heuristic, [15][7][6]), RM/ATC (Rachamadugu & Morton
heuristic, apparent tardiness cost [15][16][14]), XD (X-dispatch bottleneck
heuristic [15][16]) and ATCS (apparent tardiness cost with setups [12][16]).
We call them ’basic’ because most of these can be further modified for use in
dynamic problem variant or with existence of setup times.

5



3.3 Handling Dynamic Job Arrivals

In a dynamic environment, where jobs arrive over time, scheduling heuristics
that presume all the jobs are available are modified so that the processing
time of a job is increased by job’s ”time till arrival” (waiting time), defined as

wtj = max {rj − current time, 0} . (4)

The question remains as to which jobs to include when calculating the priority
function? It can be shown that, for any regular scheduling criteria [15], a job
should not be scheduled if the waiting time for that job is longer than the
processing time of the shortest of all currently available unscheduled jobs
(some scheduling software implementations also include this condition [8]). In
other words, we may only consider jobs j for which

wtj < min
i

{pi} ,∀i : ri ≤ current time . (5)

Therefore, when testing in dynamic conditions, we use the following meta-
algorithm with an arbitrary priority function:

while there are unscheduled jobs do
wait until the machine and at least one job are ready;
pMIN = processing time of the shortest available job;
calculate priorities of all jobs j with wtj < pMIN ;
schedule job with best priority;

end while

3.4 Handling Precedence Constraints

The existing heuristics can also be used with precedence constraints, as long
as the scheduler considers only those jobs whose predecessors have finished.
However, this would yield poor results since precedence information is not
included in priority calculation. In this scheduling environment we include
additional benchmark heuristics:

• Highest level heuristic (denoted HL) chooses the job with the highest level
in the precedence graph, among the available jobs. If we define the path
length as the sum of processing times of all jobs (nodes) in a path in the
graph, then the level of a job is defined as the length of the longest path
from that job to any job with no successors (i.e. any node with no child
nodes).

6



• Sidney algoristic (denoted SIDNEY) is a more complex algorithm given in
[5]. The word ’algoristic’ is used because it can be shown that this procedure
is optimal for assembly tree and near optimal for general tree precedence
graphs [15], with weighted tardiness and weighted flowtime as objectives.

3.5 Experimental Setup

The genetic programming heuristics are evolved using a set of learning test
cases - scheduling instances. Each scheduling instance is defined with the fol-
lowing parameters: the number of jobs n, their processing times, due dates and
weights. Job release dates, setup times and precedence constraints may also be
included for variants of the problem. If precedence constraints are taken into
account, test cases are defined with the most general form of constraints, i.e.
where precedence graphs do not exclusively take the form of chains, branching
trees or assembly trees. The values of the above parameters are generated in
accordance with methods and examples given in [7], [12], [11] and [15].

We define 100 scheduling instances that are used as test cases in learning pro-
cess and additional 300 instances that are used for evaluation purposes only.
In the experiments we follow the standard machine learning paradigm: GP is
trained on learning set of test cases for a limited number of generations, which
is repeated in 20 runs for each experiment. Only the best solutions (evolved
heuristics) from each run are then compared with existing heuristics on the
evaluation set and an average performance with standard deviation is given.
Out of these, a single best heuristic is chosen for head-to-head comparison
with existing algorithms.

3.5.1 Fitness Function

In the evolution process, a single scheduling criteria can be selected as fitness
function, which is in the case of one machine scheduling either weighted tardi-
ness or weighted number of late jobs (smaller values indicate greater fitness).
Evaluation of scheduling heuristics involves a large number of test cases with
different number of jobs, job durations and weights. In order for all the test
cases to have a similar influence to the overall quality estimate of an algo-
rithm, we define normalized criteria for each test case. Normalized weighted
tardiness is defined as

Tw =

n∑
j=1

wjTj

n · w̄ · p̄
, (6)

7



and normalized number of late jobs as

Uw =

n∑
j=1

wjUj

n · w̄
, (7)

where n represents the number of jobs in a test case, w̄ the average weight and
p̄ the average duration of all jobs. The total quality estimate of a scheduling
algorithm is expressed as the sum of normalized criteria over all the test cases.

3.5.2 Genetic Programming Functions and Terminals

The choice of functions (inner tree nodes) and terminal tree nodes is a crucial
step in the overall optimization process since they must allow the program to
use all the relevant information and form an efficient solution. We define the
same function set for every scheduling environment and a different terminal
set depending on the variant of the problem. The complete set of primitives
used as tree elements for single machine problems is presented in Table 1.

3.6 Scheduling in Static Environment

In a static environment all jobs are available at time zero, hence the schedul-
ing procedure is simple: every time the machine is available, the priorities of
all available jobs are calculated and the best priority job is scheduled. This
procedure is the same regardless of the priority function used (either existing
or GP evolved). The solution of genetic programming is represented with a
single tree that embodies the priority function.

Three series of experiments were conducted in this environment: the first for
the simple static problem, second with additional sequence dependent setups
and third with precedence constraints. In each series the genetic program was
trained in 20 runs on learning set of test cases with weighted tardiness criteria
(denoted ’Twt’ in results) as a fitness function. Additionally, we also include
the other non-trivial criteria (weighted number of late jobs, denoted ’Uwt’)
for better insight. Resulting best priority functions from each run are then
compared with existing heuristics on the evaluation set of test cases; average
achieved quality and standard deviation (on evaluation set) is included in the
results. Apart from total criteria values, a good performance measure for a
scheduling heuristic may be defined as the percentage of test cases in which
the heuristic provided the best achieved result (or the result that is not worse
than any other heuristic). We denote this value as the dominance percentage
and also include it in the results.

8



Table 1
The function and terminal node set - one machine scheduling

Function
name

Definition

ADD, SUB,
MUL, DIV

binary addition, subtraction, multiplication and protected
division

POS POS (a) = max {a, 0}

Terminal
name

Definition

Terminals used in every problem variant

pt nominal processing time of a job (pj)

dd due date (dj)

w weight (wj)

SL positive slack, max {dj − pj − time, 0}

Nr number of remaining (unscheduled) jobs

SPr sum of processing times of remaining jobs

SD sum of due dates of all jobs

Additional terminals for dynamic environment

AR job arrival time (waiting time), max {rj − time, 0}

Additional terminals for sequence dependent setups

STP setup time from previous to current job j

Sav average setup time from previous (l) to all jobs 1
n−1

n∑
j=1

slj

Additional terminals with precedence constraints

SC number of immediate successors

LVL job’s level in precedence graph

For the first series, the GP evolved priority functions achieved mean best result
of 1468.0 with σ = 2.4 in normalized weighted tardiness on evaluation set of
test cases. A single priority function is compared with the appropriate existing
heuristics and the results are shown in Table 2. It can be observed that the
evolved priority function dominates over other heuristics in a majority of test
cases, and is at the same time second best for the other non-optimized criteria.

In the second series additional sequence dependent setup times are included;
here GP achieved mean best value of 2082.2 with σ = 17.4 and those results
can be seen in Table 3. Finally, the evolved heuristics are compared with
appropriate algorithms in a precedence constrained environment, for which

9



Table 2
Single machine, static weighted tardiness

Heuristic Normalized criteria Dominance

Twt Uwt Twt Uwt

GP 1468.1 156.6 70.8% 25.2%

RM 1510.2 147.0 28.5% 31.0%

MON 1871.9 157.5 2.5% 11.3%

WSPT 2347.6 168.4 0.3% 20.3%

EDD 3958.8 307.3 21.5% 18.8%

Table 3
Single machine, static weighted tardiness with setups

Heuristic Normalized criteria Dominance

Twt Uwt Twt Uwt

GP 2075.1 182.9 67.5% 44.7%

ATCS 2190.2 196.8 26.3% 22.5%

RM 2629.9 305.4 4.0% 0.7%

MON 2536.6 202.9 2.2% 12.3%

WSPT 3035.9 197.9 0.2% 24.5%

Table 4
Single machine, static weighted tardiness with precedence constraints

Heuristic Normalized criteria Dominance

Twt Uwt Twt Uwt

GP 4353.4 279.7 53.0% 13.0%

SIDNEY 4421.0 244.9 40.2% 48.0%

RM 5015.9 260.5 3.3% 23.2%

MON 5078.8 263.7 1.8% 11.7%

HL 5955.9 308.3 0.0% 1.2%

the mean weighted tardiness value is 4351.7 with σ = 40.4; the results are
compared in Table 4.

The results show that the presented approach has the ability to generalize
and perform well on unseen instances of scheduling problems. This is further
investigated in the next subsection.

10



Table 5
Single machine, dynamic weighted tardiness

Heuristic Normalized criteria Dominance

Twt Uwt Twt Uwt

GP 331.3 94.7 75.8% 44.0%

XD 389.7 97.0 22.5% 31.7%

RM 451.7 105.3 9.5% 17.0%

MON 623.1 108.3 3.0% 8.8%

WSPT 845.0 100.8 0.0% 20.3%

3.7 Scheduling in Dynamic Environment

In a dynamic environment the jobs have distinct release times, which GP may
use in the construction of the priority function. In this environment we in-
cluded the appropriate existing heuristics for comparison. For this experiment
we achieved mean best result of 331.9 with σ = 2.8 and the comparison results
are shown in Table 5.

3.8 Arbitrary Scheduling Environments

For each presented variant of the problem (setup times, constraints, ...) there is
usually a heuristic that best suits given environment. However, if the problem
includes combinations of the variants, scheduling becomes more complicated
and the choice of suitable heuristic is not trivial. To illustrate this, we con-
ducted another two series of experiments: the first one is concerned with a dy-
namic environment with setup times, in which GP evolved heuristic achieved
mean best result of 642.9 with σ = 33.2 in normalized weighted tardiness
(Table 6). In the second experiment the static environment includes setup
times and precedence constraints, and the results obtained were 5649.6 with
σ = 79.6 (Table 7).

In an arbitrary scheduling environments such as these, GP evolved heuris-
tic clearly dominates over existing algorithms, which is not surprising: for a
specific combination of environment characteristics, no suitable heuristic may
even exist that will fit the given conditions.

11



Table 6
Single machine, dynamic weighted tardiness with setups

Heuristic Normalized criteria Dominance

Twt Uwt Twt Uwt

GP 642.6 115.5 60.7% 54.8%

ATCS 773.6 138.7 21.5% 12.0%

XD 813.3 180.8 13.7% 2.7%

MON 943.6 148.7 0.7% 5.8%

WSPT 1191.1 123.0 0.2% 25.0%

Table 7
Single machine, static weighted tardiness with setups and precedence constraints

Heuristic Normalized criteria Dominance

Twt Uwt Twt Uwt

GP 5643.6 297.9 74.8% 21.8%

ATCS 6282.6 289.8 7.3% 27.2%

RM 6361.2 306.3 7.5% 10.5%

SIDNEY 6352.8 293.5 4.8% 21.8%

MON 6416.3 299.2 3.7% 12.7%

4 Job Shop Scheduling

4.1 Problem Statement

Job shop scheduling includes running n jobs on m machines, where each job
has m operations and each operation is to be processed on a specific machine
(more general model involves arbitrary number of operations for any job).
Duration of one operation of job j on machine i is denoted with pij. Every
machine and job is considered to be available for processing from the begin-
ning. The operations of each job have to be completed in a specific sequence
which differs from job to job. In addition to weighted tardiness and number of
tardy jobs, another non-trivial and widely used criteria are weighted flowtime
and makespan. We define normalized weighted flowtime of a set of jobs as

Fw =

n∑
j=1

wjFj

n · w̄ · p̄
, (8)

12



where Fj equals to the completion time of the last operation of job j, Cj.
Normalized makespan is similarly defined as

Cmax =
max {Cj}

n · p̄
. (9)

Although the jobs are considered to be available from time zero, scheduling
on a given machine is inherently dynamic because an operation may only be
ready at some time in the future (after the completion of the job’s previous
operation). We therefore modify the processing time of an operation as in the
single machine dynamic problem (inserted idleness approach).

Job shop priority scheduling involves determining the next operation to be
processed on a given machine. The scheduling on a machine may only occur
if the machine is available and if either of the following is true: there are
operations ready to be processed on that machine or there are operations
which will be ready for processing at a known time in future. The latter
situation occurs if the previous operation of a job has already started and
we know the time it will finish. This procedure can be described with the
following meta-algorithm:

while there are unprocessed operations do
wait for a machine with pending operations;
pMIN = processing time of the shortest available operation;
calculate priorities of all operations with waiting time less than pMIN ;
schedule best priority operation;
update machine and job’s next operation ready time;

end while

The choice of operations considered for scheduling is still restricted to those
operations whose waiting time (4) is smaller than the duration of the shortest
available operation.

4.2 Benchmark Scheduling Heuristics

In efficiency comparison we used the following job shop heuristics: WSPT,
processing time to the total work remaining (WSPT/TWKR), weighted to-
tal work remaining (WTWKR), dynamic slack per remaining process time
(SLACK/TWKR), COVERT (cost over time) and Rachamadugu & Morton
job shop heuristic (RM). Each heuristic is described with its priority function;
detailed descriptions of the listed heuristics can be found in [3] and [15].

13



Table 8
The function and terminal node set - job shop problem

Function name Definition

ADD, SUB, MUL,
DIV, POS

as in Table 1

Terminal name Definition

pt operation processing time (pij)

dd job due date (dj)

w job weight (wj)

CLK current time

AR operation waiting time: max {rij − time, 0} , where rij de-
notes finishing time of the previous operation (before machine
i)

NOPr number of remaining job operations

TWK total processing time of all operations of a job

TWKr processing time of remaining operations of a job

PTav average duration of all the operations on a given machine

HTR head time ratio: the ratio of the total time the job has been in
the system and total duration of job’s completed operations

4.3 Scheduling with GP in Job Shop Environment

As in the single machine case, the solution of genetic programming is a single
tree which represents the priority function to be used with the given meta-
algorithm. The choice of functions is similar to the previous implementation,
but the terminals are radically different, because they must include different
information of the system state. The set of functions and terminals is presented
in Table 8. In this environment we define 80 test cases for learning and 80
evaluation test cases, in addition to 80 instances taken from [18], used for
evaluation only. The evaluation process is the same as in the single machine
problem.

Two series of experiments were conducted in job shop environment, both con-
cerned with static job shop scheduling: in the first one weighted job tardiness
is minimized and total makespan in the second one. In the first series the ob-
tained normalized weighted tardiness was 151.5 and σ = 2.0 on the evaluation
set of test cases and the overall performance is presented in Table 9. In the
second series the achieved makespan was 18.12 with σ = 0.51, whereas the
algorithm performance is shown in Table 9.

14



Table 9
Job shop, weighted tardiness optimization

Heuristic Normalized criteria Dominance

Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

GP 151.5 123.7 393.5 21.8 82% 65% 73% 0%

RM 165.2 125.4 420.7 20.2 12.5% 55% 1.9% 3.1%

COVERT 231.9 143.5 506.0 19.5 0% 44.4% 0.6% 38.8%

WSPT 175.6 128.3 400.1 20.2 2.5% 55% 6.3% 3.8%

SPT/TWKR 230.6 141.5 494.6 19.6 0.6% 42.5% 0.6% 33.8%

WTWKR 179.6 125.9 398.1 21.1 1.9% 63.1% 13.1% 3.8%

SL/TWKR 259.3 147.2 534.8 20.3 0% 44.4% 0% 16.3%

Table 10
Job shop, makespan optimization

Heuristic Normalized criteria Dominance

Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

GP 339.1 155.2 624.3 18.4 0% 43.7% 0% 80%

RM 165.2 125.4 420.7 20.2 65.6% 66.3% 34.4% 1.3%

COVERT 231.9 143.5 506.0 19.5 0.6% 44.4% 0.6% 12.5%

WSPT 175.6 128.3 400.1 20.2 35.6% 55% 46.9% 1.3%

SPT/TWKR 230.6 141.5 494.6 19.6 3.8% 44.4% 3.8% 8.1%

WTWKR 179.6 125.9 398.1 21.1 21.9% 72.5% 41.9% 1.3%

SL/TWKR 259.3 147.2 534.8 20.3 0.6% 46.9% 0% 2.5%

5 Genetic Programming Parameters

In this section we present a brief exploration of the influence that GP param-
eters have on the efficiency of the proposed approach and justify the choice
of parameter values in previous sections. The most important parameters in
our view are those that influence the ability of GP to generalize over unseen
problem instances. Among the possible choices, we identify the stopping cri-
teria, learning set size, maximum tree depth and the population size, all of
which are not specific to the actual problem only but are common to any
machine learning application using GP. The results are presented both as av-
erage normalized criteria value and average dominance percentage for static
one machine weighted tardiness problem, with 20 runs conducted for every
parameter value.

15



Fig. 1. Parameter influence: number of generations

Fig. 2. Parameter influence: learning set size

The first parameter to investigate was the number of generations after which
the evolution is stopped; the possible values and related results showing effi-
ciency on unseen set of evaluation test cases are shown in Fig. 1. Based on
the results, we chose 50 generations as stopping criteria, which coincides with
Koza’s original recommendations for GP. Note that the differences in efficiency
are relatively small in comparison to the results of the existing heuristics.

Learning set size and the choice of learning instances is of great importance
in machine learning applications in general. Among the tested values, the set
size of 100 cases showed to be most adequate for this application (Fig. 2),
given the evolved heuristic efficiency on evaluation problem instances.

The population sizes in GP are commonly greater than in other evolutionary
algorithm variants; following previous best practices we experimented with
sizes as shown in Fig. 3. The chosen population size was 2000 since the im-
provement with greater sizes is not significant to justify the linear increase in
computation time.

Finally, the size of the evolved trees is traditionally regulated with maximum
tree depth parameter, which greatly influences the evolution computational
time and solution parsimony. Based on the results shown in Fig. 4, we chose
the maximum depth of 14.

In general, we can conclude that the GP related parameters have only a small
influence on the overall efficiency, which may be considered as a good charac-

16



Fig. 3. Parameter influence: population size

Fig. 4. Parameter influence: maximum tree depth

teristic for future applications of this type. Furthermore, the performance is
quite consistent and thus only a small number of runs is needed to achieve a
high certainty of producing a good result.

6 Discussion

It can be seen that GP can easily outperform other heuristics for an arbi-
trary scheduling criteria. On the other hand, it is not very likely that a single
heuristic, either existing or evolved, will dominate over more than one crite-
ria. This is particularly true in the presented GP system guided with a single
fitness function. If we are after a scheduler with good overall performance,
then it is maybe advisable to take some ’general use’ existing heuristic, but if
we want to maximize efficiency for a single criterium, then the evolved heuris-
tics represent a good alternative. Furthermore, the user may also define its
own criteria tailored to specific conditions (e.g. a linear combination of exist-
ing ones, dynamically varying criteria in response to current state etc.) and
evolve a suitable heuristic.

The more common stopping criteria in machine learning applications also
uses a validation subset of test cases to estimate good generalization perfor-
mance. Preliminary results show that this technique is not readily applicable
to this problem, since the performance on the validation set is very erratic
from generation to generation. We are currently investigating the possibilities

17



of incorporating the validation set into the evolution process.

The scheduling rule obtained with GP can be applied in a dynamic environ-
ment where the system parameters are allowed to change during execution. In
that kind of situation it is not practical to employ a search based procedure
because it may take more time that we are willing to lose and it has to be
adapted to take into account the fact that some of the jobs are already under-
way and additional constraints may need to be defined. On the other hand,
GP evolved scheduling rule can give the solution in the form of the next state
of the system practically instantaneously.

It should be stressed that the aim of the presented approach is not the find-
ing of (near)optimal schedules, but the ones of acceptable quality in a small
amount of time. It is clear that the solution provided with the search-based
methods, i.e. the ones that search the space of possible schedules, will in most
cases be better. However, those methods are generally not applicable in situ-
ations where we need to make a schedule repeatedly, and have to make it in
a restricted time, or have to respond quickly to changes in environment (such
as on-line scheduling, machine failures, job parameter changes etc). Examples
may include batch scheduling in multi-user grid or cluster environment or even
process scheduling in embedded systems, which describe the conditions that
the priority scheduling, applied in this work, is intended to be used in.

7 Conclusion

This paper shows how genetic programming can be used to build scheduling
algorithms for a specific environment with arbitrary scheduling criteria. The
scheduling heuristic is composed of two parts: a meta-algorithm, which is
defined manually, and a priority function, which is evolved by GP. An evolved
GP priority rule, in the form of a priority function, could be implemented into
other scheduling systems, or even used by practitioners in the field without
additional software (as some existing heuristics are).

The results are promising, as for given environments the evolved heuristics ex-
hibit performance that is equivalent or better than human-made algorithms.
Heuristics obtained with GP have shown to be especially efficient in cases
where no adequate algorithms exist, and we believe this approach to be par-
ticularly useful in those environments.

18



References

[1] T. P. Adams, Creation of simple, deadline, and priority scheduling algorithms
using genetic programming, in: Genetic Algorithms and Genetic Programming
at Stanford 2002, 2002.

[2] B. L. Atlan, J. Polack, Learning distributed reactive strategies by genetic
programming for the general job shop problem, in: Proceedings 7th annual
Florida Artificial Intelligence Research Symposium, IEEE, IEEE Press, 1994.

[3] Y.-L. Chang, T. Sueyoshi, R. Sullivan, Ranking dispatching rules by data
envelopment analysis in a job shop environment, IIE Transactions 28 (8) (1996)
631.

[4] V. Cheng, L. Crawford, P. Menon, Air traffic control using genetic search
techniques, in: IEEE International Conference on Control Applications, IEEE,
Hawai’i, 1999.

[5] B. Dharan, T. Morton, Algoristics for single machine sequencing with
precedence constraints, Management Science 24 (1978) 1011–1020.

[6] C. Dimopoulos, A. Zalzala, A genetic programming heuristic for the one-
machine total tardiness problem, in: Proceedings of the Congress on
Evolutionary Computation, vol. 3, 1999.

[7] C. Dimopoulos, A. M. S. Zalzala, Investigating the use of genetic programming
for a classic one-machine scheduling problem, Advances in Engineering Software
32 (6) (2001) 489.

[8] A. Feldman, M. Pinedo, X. Chao, J. Leung, Lekin, flexible job shop scheduling
system, http://www.stern.nyu.edu/om/software/lekin/ (2003).

[9] J. V. Hansen, Genetic search methods in air traffic control, Computers and
Operations Research 31 (3) (2004) 445.

[10] A. Jones, L. C. Rabelo, Survey of job shop scheduling techniques, Tech. rep.,
NISTIR, National Institute of Standards and Technology, Gaithersburg (1998).

[11] S. M. Lee, A. A. Asllani, Job scheduling with dual criteria and sequence-
dependent setups: mathematical versus genetic programming, Omega 32 (2)
(2004) 145–153.

[12] Y. H. Lee, K. Bhaskaran, M. Pinedo, A heuristic to minimize the total weighted
tardiness with sequence-dependent setups, IIE Transactions 29 (1997) 45–52.

[13] K. Miyashita, Job-shop scheduling with gp, in: Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann,
2000.

[14] R. Mohan, V. Rachamadugu, T. E. Morton, Myopic heuristics for the weighted
tardiness problem on identical parallel machines, Tech. rep., The Robotics
Institute, Carnegie-Mellon University (1983).

19



[15] T. E. Morton, D. W. Pentico, Heuristic Scheduling Systems, John Wiley &
Sons, Inc., 1993.

[16] M. Pfund, J. W. Fowlera, A. Gadkaria, Y. Chen, Scheduling jobs on parallel
machines with setup times and ready times, Computers and Industrial
Engineering 54 (4) (2008) 764–782.

[17] M. Pinedo, Offline deterministic scheduling, stochastic scheduling, and online
deterministic scheduling: A comparative overview, in: J. Y.-T. Leung (ed.),
Handbook of Scheduling, chap. 38, Chapman & Hall/CRC, 2004.

[18] E. Taillard, Scheduling instances, ”http://ina.eivd.ch/Collaborateurs/etd/
problemes.dir/ordonnancement.dir/ordonnancement.html” (2003).

[19] S. S. Walker, R. W. Brennan, D. H. Norrie, Holonic job shop scheduling using
a multiagent system, IEEE Intelligent Systems (2) (2005) 50.

[20] W.-J. Yin, M. Liu, C. Wu, Learning single-machine scheduling heuristics subject
to machine breakdowns with genetic programming, in: Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, IEEE Press, 2003.

20


